NorthernHemispheremid-winter vortex-displacement and vortex-split stratospheric sudden warmings: Influence of the Madden-Julian Oscillation and Quasi-Biennial Oscillation
نویسندگان
چکیده
We investigate the connection between the equatorial Madden-Julian Oscillation (MJO) and different types of the Northern Hemisphere mid-winter major stratospheric sudden warmings (SSWs), i.e., vortex-displacement and vortex-split SSWs. The MJO-SSW relationship for vortex-split SSWs is stronger than that for vortex-displacement SSWs, as a result of the stronger and more coherent eastward propagating MJOs before vortex-split SSWs than those before vortex-displacement SSWs. Composite analysis indicates that both the intensity and propagation features of MJO may influence the MJO-related circulation pattern at high latitudes and the type of SSWs. A pronounced Quasi-Biennial Oscillation (QBO) dependence is found for vortex-displacement and vortex-split SSWs, with vortex-displacement (-split) SSWs occurring preferentially in easterly (westerly) QBO phases. The lagged composites suggest that theMJO-related anomalies in the Arctic are very likely initiated when the MJO-related convection is active over the equatorial Indian Ocean (around the MJO phase 3). Further analysis suggests that the QBO may modulate the MJO-related wave disturbances via its influence on the upper tropospheric subtropical jet. As a result, the MJO-related circulation pattern in the Arctic tends to be wave number-one/wave number-two ~25–30days following phase 3 (i.e., approximately phases 7–8, when the MJO-related convection is active over the western Pacific) during easterly/westerly QBO phases, which resembles the circulation pattern associated with vortex-displacement/vortex-split SSWs.
منابع مشابه
Observed connection between stratospheric sudden warmings and the Madden-Julian Oscillation
[1] The effect of the Madden-Julian Oscillation (MJO) on the Northern Hemisphere wintertime stratospheric polar vortex and major, mid-winter stratospheric sudden warmings (SSWs) is evaluated using a meteorological reanalysis dataset. The MJO influences the region in the tropospheric North Pacific sector that is most strongly associated with a SSW. Consistent with this, SSWs in the reanalysis re...
متن کاملMJO‐Related Tropical Convection Anomalies Lead to More Accurate Stratospheric Vortex Variability in Subseasonal Forecast Models
The effect of the Madden-Julian Oscillation (MJO) on the Northern Hemisphere wintertime stratospheric polar vortex in the period preceding stratospheric sudden warmings is evaluated in operational subseasonal forecasting models. Reforecasts which simulate stronger MJO-related convection in the Tropical West Pacific also simulate enhanced heat flux in the lowermost stratosphere and a more realis...
متن کاملInfluence of the quasi‐biennial oscillation and El Niño–Southern Oscillation on the frequency of sudden stratospheric warmings
[1] Stratospheric sudden warmings (SSWs) are a major source of variability during Northern Hemisphere winter. The frequency of occurrence of SSWs is influenced by El Niño–Southern Oscillation (ENSO), the quasi‐biennial oscillation (QBO), the 11 year solar cycle, and volcanic eruptions. This study investigates the role of ENSO and the QBO on the frequency of SSWs using the National Center for At...
متن کاملA New Look at Stratospheric Sudden Warmings. Part I: Climatology and Modeling Benchmarks
Stratospheric sudden warmings are the clearest and strongest manifestation of dynamical coupling in the stratosphere–troposphere system. While many sudden warmings have been individually documented in the literature, this study aims at constructing a comprehensive climatology: all major midwinter warming events are identified and classified, in both the NCEP–NCAR and 40-yr ECMWF Re-Analysis (ER...
متن کاملZonal-Mean Dynamics of Extended Recoveries from Stratospheric Sudden Warmings
The recovery of theArctic polar vortex following stratospheric suddenwarmings is found to take upward of 3 months in a particular subset of cases, termed here polar-night jet oscillation (PJO) events. The anomalous zonal-mean circulation above the pole during this recovery is characterized by a persistently warm lower stratosphere, and above this a cold midstratosphere and anomalously high stra...
متن کامل